Donor and Ligand Effects on Acetylene Reduction with Cobalt(11)–Thiol Complex Catalysts

By YUKIO SUGIURA,* TAKANOBU KIKUCHI, and HISASHI TANAKA (Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan)

Summary Donor and ligand effects on acetylene reduction with thiol-Co^{II} complex catalysts have been investigated and compared with results for the corresponding Mo catalysts, which show a different product distribution; sulphydryl- and imidazole-containing peptide ligands show high catalytic activity.

SEVERAL molybdenum-complex catalysts mimic nitrogenase in the reduction of acetylene to ethylene.¹ In addition, donor and ligand effects on product distribution (ethylene, ethane, butadiene, *etc.*) have been systematically investigated.^{2,3} We recently initiated a study of Co complexes containing cysteine and cysteamine related ligands which show promise as potential catalysts, and obtained results which are somewhat different from published results.⁴ The discrepancy is presumably due to the difference in pH of the reaction and the reducing agents used.

A typical catalytic system consisted of a 20 ml glass container fitted with a rubber serum cap containing borate buffer (pH 9.2; 3.5 ml), CoCl₂ (0.5 ml; 0.1 mM aqueous solution), and the ligand (0.5 ml of 0.2 mM solution; borate buffer). The solution was flushed with water-washed acetylene (1 atm) and the reaction was initiated by injection of 0.5 ml of NaBH₄ (0.5 ml of 2 mM solution; borate buffer).

Reaction mixtures were then shaken at 20 °C and the gas phase analysed by g.l.c. Two-component systems consisting of solutions of the cobalt salt and NaBH₄ alone exhibited no significant catalytic activity.

Table 1 shows the yield and rate of the reduction of acetylene with the Co^{II}-cysteine and -cysteamine related ligand systems in the presence of sodium borohydride. The formation of buta-1,3-diene and higher hydrocarbons was negligibly small. The cysteine-Co and -Mo systems consume C₂H₂ at comparable rates but the product distributions are very different. The major product from reduction of C_2H_2 with the Mo-cysteine catalyst in borate buffer is C_4H_6 , not C_2H_4 [$C_2H_4(52.5\,\mu\text{mol})$, $C_2H_6(0.6)$, and $C_4H_6(142)$].³ Selenocysteine- and selenocysteamine-Co11 complex systems show a higher ethylene-ethane ratio than cysteineand cysteamine-Co^{II} complex systems, though the total yield is lower. In the Mo catalyst systems, the $C_2H_4: C_2H_6$ ratios with cysteamine and selenocysteamine are 16.5:1 and 1.9:1, respectively.² The effect of co-ordination donor atoms on the catalytic activity clearly increases in the order S>Se≫O. This order is consistent with that of the corresponding Mo ligand systems.² The maximal activity of the cysteine- and cysteamine-Co^{II} complexes occurred in the pH region 8.5 - 10.0. The optimum pH region for the formation of these Co^{II} complexes was ca. $8 \cdot 0 - 10 \cdot 5$.

TABLE 1. Yield and rate of ethylene and ethane production from acetylene with Co^{II} complexes of cysteine, cysteamine, and related ligands.^a

Ligand	$C_2H_4/\mu mol$	$\mathrm{C_2H_6}/\mu\mathrm{mol}$	Total yield∕µmol	Relative yield (%)	$C_2H_4: C_2H_6$	Rate ∕µmol min-1	Relative rate (%)
Serine	 4	0	4	0.8		0	0
Cysteine	 428	92	519	100	4.7:1	47	100
Selenocysteine	 220	14	234	45	15.6:1	25	52
Ethanolamine	 3	0	3	0.6		0	0
Cysteamine	 406	40	446	100	10.2:1	64	100
Selenocysteamine	 154	5	159	36	30.8:1	38	60

^a Yields of the products were determined after a reaction time of 30 min; rates refer to $(C_{2}H_{4} + C_{2}H_{6})/\min$ for the initial 5 min.

TABLE 2. Effect of amino-acid residues on acetylene reduction with 2:1 sulphydryl-containing peptide-CoII complex catalysts.

	R1	R ²	Yield ^b C ₂ H ₄	$\mu mol C_2 H_6$	Rate ^c /µmol min ⁻¹
(A) ^a	\mathbf{Ph}	н	154	60	19.7
. ,	Me	н	141	35	13.7
	Pri	н	59	5	9.0
	Me	\mathbf{Ph}	159	21	$23 \cdot 0$
	н	Imidazol-4-ylmethyl	256	49	27.5
	н	Indol-3-ylmethyl	62	7	2.5
	Me	CH ₂ SH	83	8	6.4
	Pri	$CH_{2}SH$	70	8	8.3
(B)ª	н	- н	63	4	9.4
	н	Imidazol-4-ylmethyl	84	4	13 ·0
(C) ^a	н	Н	180	29	16.2
	н	Imidazol-4-ylmethyl	291	81	47 ·0

^a Ligands: (A), R¹CH(SH)CONHCH(CO₂H)R³; (B), R¹CH(SH)-CH₂CONHCH(CO₂H)R₂; (C), 4-R¹CH(SH)CONHCHR²CONH-CH(CO₂H)CH₂-imidazole. ^b Yield after 30 min reaction. ^c Rates refer to $(C_2H_4 + C_2H_6)/\min$ for the initial 5 min.

¹ G. D. Schrauzer, Angew. Chem., 1975, 87, 579. ² Y. Sugiura, T. Kikuchi, and H. Tanaka, J.C.S. Chem. Comm., 1976, 519.

³ J. L. Cordin, N. Pariyadath, and E. I. Stiefel, J. Amer. Chem. Soc., 1976, 98, 7862. ⁴ G. N. Schrauzer and G. Schlesinger, J. Amer. Chem. Soc., 1970, 92, 1808; G. N. Schrauzer and P. A. Doemeny, *ibid.*, 1971, 93, 1608.

⁶ Y. Sugiura and Y. Hirayama, J. Amer. Chem. Soc., 1977, 99, 1581.
⁶ S. P. Cramer, T. K. Eccles, F. W. Kutzler, K. O. Hodgson, and L. E. Moetenson, J. Amer. Chem. Soc., 1976, 98, 1287.

These results suggest that complex formation plays a specific role in the reduction of acetylene with these Co^{II} complex catalysts.

Table 2 summarizes the effect of amino-acid residues on the reduction of acetylene with various sulphydryl-containing peptide-Co^{II} complex catalysts. The effect of amino-acid residues increases in the order histidine>glycine>cysteine>tryptophan. The high catalytic activity of the sulphydryl- and imidazole-containing peptides, N-mercaptoacetyl-L-histidine⁵ and N-mercaptoacetyl-DLhistidyl-DL-histidine, is of special interest. The results suggest participation of the histidine imidazole group in the active site of nitrogenase. Co-ordination of the cysteine sulphydryl group at the Mo site has been indicated by Xray absorption-edge spectra.6

(Received, 29th July 1977; Com. 783.)